УДК 539.23; 539.216.1; 537.311.322

В. Д. Кревчик, М. Б. Семенов, Р. В. Зайцев, А. К. Арынгазин, К. Ямамото, В. А. Рудин, П. В. Кревчик, И. А. Егоров

ОСОБЕННОСТИ ДИССИПАТИВНОГО ТУННЕЛИРОВАНИЯ В КВАНТОВОЙ МОЛЕКУЛЕ С УЧЕТОМ ДВУХ ФОНОННЫХ МОД ДИЭЛЕКТРИЧЕСКОЙ МАТРИЦЫ¹

Аннотация. Рассматривается модель 1D-диссипативного туннелирования для структур из квантовых точек в системе совмещенного ACM/CTM в условиях внешнего электрического поля. Найдено, что влияние двух локальных мод матрицы среды термостата на вероятность 1D-диссипативного туннелирования приводит к появлению нескольких неэквидистантных пиков в соответствующей полевой зависимости. Полученная теоретическая зависимость качественно согласуется с экспериментальной вольт-амперной характеристикой контакта ACM зонда к поверхности квантовой точки из InAs.

Ключевые слова: диссипативное туннелирование, квантовая точка, квантовая молекула, фононные моды среды-термостата.

Absract. Thearticle considers a 1D-dissipative tunneling model for structures with quantum dots in a system of joint AFM/STM in external electric field. It has been found, that the influence of two local modes of a heat-bath on the 1d - dissipative tunnel probability leads to appearance of some non - equidistant peaks in corresponding dependence on the electric field intensity. The obtained theoretical dependence qualitatively corresponds to experimental VAC for the AFM cantilever contact to the surface of a quantum dot from InAs.

Key words: dissipative tunneling, quantum dot, quantum molecule, phonon modes of a heat-bath.

Введение

Помимо хорошо известных приложений теории диссипативного туннелирования для описания систем с контактами Джозефсона и низкотемпературных адиабатических химических реакций, идущих по туннельному механизму, в последнее время все более широкое внимание уделяется развитию этой науки применительно к системам с квантовыми точками и квантовыми молекулами [1-10].

Изучение проблемы управляемости квантовых эффектов, связанных с диссипативной туннельной динамикой в низкоразмерных системах различной природы, является актуальной проблемой современной физики конденсированного состояния. В последние годы активизировались исследования управляемых туннельных эффектов в системах полупроводниковых квантовых точек (КТ), квантовых молекул (КМ) и взаимодействующих КМ, а также в экспериментах с СТМ/АСМ при исследовании параметров низкоразмерных структур из металлических КТ. Исследована термо- и электроуправляемость

¹ Работа выполнена при финансовой поддержке РФФИ (грант № 12-02-97002), Фонда фундаментальных исследований в области естественных наук Министерства науки Республики Казахстан (грант № 1253/ГФ) и федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы Министерства образования и науки Российской Федерации (грант № 01201278459).

и особенности диссипативного туннельного переноса в 1D- и 2D-симметричных и асимметричных системах с полупроводниковыми квантовыми точками и квантовыми молекулами [10].

Данная работа была инициирована проведенным в [10] экспериментом по измерению туннельных вольт-амперных характеристик (ВАХ) в полупроводниковых InAs KT, где были обнаружены несколько неэквидистантных пиков, интерпретированных нами ранее в рамках модели 1D-диссипативного туннелирования с учетом одной локальной фононной моды. При этом предложенная теоретическая модель позволила выявить только два единичных пика, один из которых оказался неустойчивым, что не вполне соответствовало имеющимся экспериментальным данным. В связи с этим в данной работе рассматривается модель 1*D*-диссипативного туннелирования с учетом влияния двух промотирующих фононных мод матрицы среды термостата для процесса туннелирования через структуру единичных квантовых точек в системе совмещенного АСМ/СТМ. Проводится качественное сравнение теоретической кривой вероятности 1D-туннелирования с BAX контакта ACM зонда к поверхности КТ из InAs (совместная работа «Визуализация локальной плотности состояний в квантовых точках InAs/GaAs методом комбинированной АСМ/СТМ», П. А. Бородин, А. А. Бухараев (Казанский физико-технический институт КНЦ РАН), Д. О. Филатов, Д. А. Воронцов и др. (ННГУ им. Н. И. Лобачевского)).

Используемые модели

Для того чтобы воспользоваться стандартной моделью для определения вероятности диссипативного туннелирования, будем использовать следующие обозначения для перенормированного двухъямного осцилляторно-

го потенциала во внешнем электрическом поле:
$$q_1 = b^* = b + \frac{|e|E}{\omega_0^2}$$
,

$$q_0 = a^* = a - \frac{|e| \, E}{\omega_0^2}$$
 . Тогда модельный перенормированный 1 D -потенциал мож-

но представить в стандартном виде. С учетом результатов, полученных ранее в [8-10], модельный гамильтониан системы может быть записан как

$$\widehat{H} = \frac{p_1^2}{2} + v_1(y_1) + y_1 \sum_{\alpha=2}^{N} C_{\alpha} y_{\alpha} + \frac{1}{2} \sum_{\alpha=2}^{N} \left(p_{\alpha}^2 + \omega_{\alpha}^2 y_{\alpha}^2 \right), \tag{1}$$

где

$$v_{1}(y_{1}) = \left(\frac{1}{2}\omega_{1}^{2}y_{1}^{2} + \lambda y_{1}\right)\theta\left(-\frac{\Delta I}{2\lambda} - y_{1}\right) + \left(\frac{1}{2}\omega_{1}^{2}y_{1}^{2} - \lambda y_{1} - \Delta I\right)\theta\left(\frac{\Delta I}{2\lambda} + y_{1}\right). (2)$$

Вероятность туннелирования частицы в единицу времени может быть найдена в квазиклассическом приближении. Необходимо, чтобы дебройлевская длина волны частицы была много меньше характерного линейного масштаба потенциала. Для этого вполне достаточно, чтобы высота барьера была много больше энергии нулевых колебаний в яме начального состояния. Кроме квазиклассического приближения мы должны предположить квазистационарность распада, т.е. ширина уровня Γ , с которого туннелирует частица, должна быть много меньше энергии нулевых колебаний.

Расчет вероятности 1*D*-диссипативного туннелирования с учетом двух локальных фононных мод среды – термостата

Находим 1D-квазиклассическое действие в одноинстантонном приближении с учетом влияния матрицы среды — термостата:

$$S_{B} = 2\omega_{0}^{2} (q_{0} + q_{1}) q_{0} \tau_{0} - \frac{2\omega_{0}^{2} (q_{0} + q_{1})^{2} \tau_{0}^{2}}{\beta} - \frac{4\omega_{0}^{4} (q_{0} + q_{1})^{2}}{\beta} \sum_{n=1}^{\infty} \frac{\sin^{2} \nu_{n} \tau_{0}}{\nu_{n}^{2} (\nu_{n}^{2} + \omega_{0}^{2} + \zeta_{n})}.$$
(3)

Предэкспоненциальный множитель определяется вкладом траекторий, близко расположенных от инстантона. Для этого мы должны разложить действие до квадратичного члена по отклонениям $q-q_B$ и проинтегрировать в функциональном пространстве. Тогда вероятность туннелирования в единицу времени можно записать как

$$\Gamma = B \exp(-S_R); \tag{4}$$

$$B = \begin{bmatrix} \frac{S_0}{2\pi} \cdot \frac{\det\left(\frac{\delta^2 S}{\delta q^2}\right)_{q=-q_0}}{\det'\left(\frac{\delta^2 S}{\delta q^2}\right)_{q=q_B(\tau)}} \end{bmatrix}^{1/2};$$
 (5)

$$S_0 = \int_{-\beta/2}^{\beta/2} \dot{q}_B^2(\tau) d\tau,$$
 (6)

а det' означает, что нулевое собственное значение, соответствующее нулевой моде инстантона, опущено. Отметим, что вывод этой формулы предполагает приближение идеального инстантонного газа

$$\Gamma << (\Delta \tau)^{-1}, \tag{7}$$

где $\Delta \tau$ — ширина перехода от положительного значения траектории к отрицательному. Вычисление предэкспоненциального множителя в рассматриваемой модели приводит к результату

$$B = \frac{2\omega_0^2 (q_0 + q_1)^2}{(2\pi\beta)^{1/2}} \cdot \sum_{n = -\infty}^{\infty} \frac{\sin^2 \nu_n \tau_0}{\lambda_{0n}} \left(\sum_{n = -\infty}^{\infty} \frac{\cos 2\nu_n \tau_0}{\lambda_{0n}} \right)^{-1/2}.$$
 (8)

Рассмотрим (9) с учетом взаимодействия с двумя локальными фононными модами ($\omega_{L1} = \omega_2$ и $\omega_{L2} = \omega_3$). Для упрощения будем предполагать это взаимодействие достаточно малым, т.е. $\frac{C}{\omega_2} << 1$ и $\frac{C}{\omega_1} << 1$. В этом случае

$$\zeta_n = v_n^2 \sum_{\alpha=2}^N \frac{{C_\alpha}^2}{{\omega_\alpha}^2 \left({\omega_\alpha}^2 + {v_n}^2\right)},$$

где
$$v_n = \frac{2\pi n}{\beta}$$
, $\beta = \frac{\hbar}{kT}$.

$$\zeta_n = v_n^2 \frac{C_2^2}{\omega_2^2(\omega_2^2 + v_n^2)} + v_n^2 \frac{C_3^2}{\omega_3^2(\omega_3^2 + v_n^2)}; \quad \sin^2 v_n \tau_0 = \frac{1}{2} (1 - \cos 2v_n \tau_0).$$

В результате сумма в последнем слагаемом выражения (3) перепишется в виде

$$(*) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{v_n^2 (v_n^2 + \omega_0^2 + v_n^2 \frac{C_2^2}{\omega_2^2 (\omega_2^2 + v_n^2)} v_n^2 + \frac{C_3^2}{\omega_3^2 (\omega_3^2 + v_n^2)})} - \underbrace{\frac{1}{v_n^2 (v_n^2 + \omega_0^2 + v_n^2)} v_n^2 + \frac{C_3^2}{\omega_3^2 (\omega_3^2 + v_n^2)}}_{*1})$$

$$-\frac{1}{2}\sum_{n=1}^{\infty} \frac{\cos 2\nu_{n}\tau_{0}}{\nu_{n}^{2}(\nu_{n}^{2}+\omega_{0}^{2}+\nu_{n}^{2}\frac{C_{2}^{2}}{\omega_{2}^{2}(\omega_{2}^{2}+\nu_{n}^{2})}\nu_{n}^{2}+\frac{C_{3}^{2}}{\omega_{3}^{2}(\omega_{3}^{2}+\nu_{n}^{2})}};$$
(9)

$$*_{1} = \frac{1}{2} \sum_{n=1}^{\infty} \omega_{2}^{2} \omega_{2}^{3} (\omega_{2}^{2} + v_{n}^{2}) (\omega_{3}^{2} + v_{n}^{2}) \Big\{ v_{n}^{2} \Big[(v_{n}^{2} + \omega_{0}^{2}) \omega_{2}^{2} \omega_{3}^{2} (\omega_{2}^{2} + v_{n}^{2}) (\omega_{3}^{2} + v_{n}^{2}) + (\omega_{3}^{2} + v_{n}^{2}) (\omega_{3}^{2} + v_{n}^{2}) \Big\} \Big\}$$

$$\left. + (v_n^2 + \omega_0^2) \omega_2^2 \omega_3^2 (\omega_2^2 + v_n^2) (\omega_3^2 + v_n^2) + v_n^2 C_2^2 \omega_3^2 (\omega_3^2 + v_n^2) + v_n^2 C_3^2 \omega_2^2 (\omega_2^2 + v_n^2) \right] \right\}^{-1}.$$

Обозначим $v_2^2 = x$ и преобразуем выражение в знаменателе:

$$\begin{split} x \bigg[& (x + \omega_0^2) \omega_2^2 \omega_3^2 (x + \omega_2^2) (x + \omega_3^2) + x C_2^2 \omega_3^2 (x + \omega_3^2) + x C_3^2 \omega_2^2 (x + \omega_2^2) \bigg] = \\ & = x \bigg[\omega_2^4 \omega_3^4 x + \omega_2^2 \omega_3^2 x^3 + \omega_2^2 \omega_3^2 x^2 (\omega_2^2 + \omega_3^2) + \omega_2^4 \omega_3^4 \omega_0^2 + \omega_2^2 \omega_3^2 \omega_0^2 x^2 + \\ & + \omega_2^2 \omega_3^2 \omega_0^2 x (\omega_2^2 + \omega_3^2) + C_2^2 \omega_3^4 x + C_2^2 \omega_3^2 x^2 + C_3^2 \omega_2^4 x + C_3^2 \omega_2^2 x^2 \bigg] = \\ & = x \bigg[\omega_2^4 \omega_3^2 x^3 + x^2 \bigg\{ \omega_2^2 \omega_3^2 (\omega_2^2 + \omega_3^2) + \omega_0^2 \omega_2^2 \omega_3^2 + C_2^2 \omega_3^2 + C_3^2 \omega_2^2 \bigg\} + \\ & + x \bigg\{ \omega_2^4 \omega_3^4 + \omega_0^2 \omega_2^2 \omega_3^2 (\omega_2^2 + \omega_3^2) + C_2^2 \omega_3^4 + C_3^2 \omega_2^4 \bigg\} + \omega_0^2 \omega_2^4 \omega_3^4 \bigg] = \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_3^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_3^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} + \frac{C_3^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^3 + x^2 \bigg\{ \omega_2^2 + \omega_3^2 + \omega_3^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_2^2}{\omega_2^2} + \frac{C_2^2}{\omega_2^2} + \frac{C_2^2}{\omega_2^2} \bigg\} + \\ & = x \omega_2^2 \omega_3^2 \bigg[x^2 + \omega_3^$$

$$+x\left\{\omega_{2}^{2}\omega_{3}^{2}+\omega_{0}^{2}(\omega_{2}^{2}+\omega_{3}^{2})+\frac{C_{2}^{2}\omega_{3}^{2}}{\omega_{2}^{2}}+\frac{C_{3}^{2}\omega_{2}^{2}}{\omega_{3}^{2}}\right\}+\omega_{0}^{2}\omega_{2}^{2}\omega_{3}^{2}\right].$$

Введем обозначения:

$$\begin{split} "A" &= \omega_2^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_3^2} \,, \\ "B" &= \omega_2^2 \omega_3^2 + \omega_0^2 (\omega_2^2 + \omega_3^2) + \frac{C_2^2 \omega_3^2}{\omega_2^2} + \frac{C_3^2 \omega_2^2}{\omega_3^2} \,, \ "C" = \omega_0^2 \omega_2^2 \omega_3^2 \,, \end{split}$$

тогда выражение в знаменателе первого слагаемого в (9) примет вид

$$x\omega_2^2\omega_3^2\underbrace{[x^3 + Ax^2 + Bx + C]}_{=0} = x\omega_2^2\omega_3^2(x - x_1)(x - x_2)(x - x_3).$$

Обозначим

$$Q = \frac{A^2 - 3B}{9}$$
; $R = \frac{2A^3 - 9AB + 27C}{54}$; $S = Q^3 - R^2$; $\Phi = \frac{1}{3}\arccos\left(\frac{R}{\sqrt{Q^3}}\right)$.

Если S > 0, тогда

$$x_1 = -2\sqrt{Q}\cos(\Phi) - \frac{A}{3} \quad x_2 = -2\sqrt{Q}\cos\left(\Phi + \frac{2}{3}\pi\right) - \frac{A}{3},$$

$$x_3 = -2\sqrt{Q}\cos\left(\Phi - \frac{2}{3}\pi\right) - \frac{A}{3}.$$
(10)

И первая сумма в (9) преобразуется к виду

$$\frac{1}{2} \sum_{n=1}^{\infty} \frac{\omega_2^2 \omega_3^2 (\omega_2^2 + v_n^2) (\omega_3^2 + v_n^2)}{v_n^2 \omega_2^2 \omega_3^2 (v_n^2 - x_1) (v_n^2 - x_2) (v_n^2 - x_3)}.$$
 (11)

Последнее выражение (11) разобъем на простые дроби:

$$\frac{\beta_0}{x} + \frac{\gamma}{x - x_1} + \frac{\varphi}{x - x_2} + \frac{\Delta}{x - x_3} = \frac{x^2 + x(\omega_2^2 + \omega_3^2) + \omega_2^2 \omega_3^2}{x(x - x_1)(x - x_2)(x - x_3)},$$

где

$$\beta_0 = -\frac{\omega_2^2 \omega_3^2}{x_1 x_2 x_3};$$

$$\Delta = \frac{x_3^2}{(x_3 - x_2)(x_1 - x_3)} \left\{ \frac{\omega_2^2 \omega_3^2}{x_1 x_2 x_3} \left(\frac{x_1 x_2 + x_1 x_3 + x_2 x_3}{x_2 x_3} - 1 \right) + \frac{\omega_2^2 + \omega_3^2}{x_2 x_3} - \frac{1}{x_3} \left(1 + \frac{\omega_2^2 \omega_3^2}{x_1 x_2 x_3} \left[\frac{x_1 x_2 + x_1 x_3 + x_2 x_3}{x_2 x_3} + (x_2 + x_3 - x_1) \right] \right) + \frac{(\omega_2^2 + \omega_3^2)(x_2 + x_3)}{x_2 x_3} \right\};$$

$$\varphi = \frac{x_2}{x_3(x_2 - x_1)} \left\{ \Delta \frac{x_2}{x_3} (x_1 - x_3) - 1 - \frac{\omega_2^2 \omega_3^2}{x_1 x_2 x_3} (x_2 + x_3 - x_1) - \frac{x_2 + x_3}{x_2 x_3} \left[\omega_2^2 + \omega_3^2 + \frac{\omega_2^2 \omega_3^2}{x_1 x_2 x_3} (x_1 x_2 + x_1 x_3 + x_2 x_3) \right] \right\};$$

$$\gamma = \frac{1}{x_2 x_3} \left\{ \omega_2^2 + \omega_3^2 - \Delta x_1 x_2 - \phi x_1 x_3 - \beta_0 (x_2 x_3 + x_1 (x_2 + x_3)) \right\}, \quad \nu_n = \frac{2\pi n}{\beta}. \quad (12)$$

В итоге первая сумма в (9) преобразуется к виду

$$*_{1} = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{\beta_{0}}{v_{n}^{2}} + \frac{\gamma}{v_{n}^{2} - x_{1}} + \frac{\phi}{v_{n}^{2} - x_{2}} + \frac{\Delta}{v_{n}^{2} - x_{3}} \right);$$

$$\sum_{n=1}^{\infty} \frac{\beta_{0}}{v_{n}^{2}} = \beta_{0} \sum_{n=1}^{\infty} \frac{\beta^{2}}{4\pi^{2}n^{2}} = \beta_{0} \frac{\beta^{2}}{4\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} = \beta_{0} \frac{\beta^{2}}{24};$$

$$x_{1} = -2\sqrt{Q}\cos\phi - \frac{A}{3} = -x_{10} = -\left(2\sqrt{Q}\cos\phi + \frac{A}{3}\right).$$

Если $x_1 < 0$, то

$$\begin{split} \sum_{n=1}^{\infty} \frac{\gamma}{v_n^2 + x_{10}} &= \sum_{n=1}^{\infty} \frac{\gamma}{4\pi^2 n^2} = \\ &= \frac{\gamma \beta^2}{4\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2 + \frac{x_{10}\beta^2}{4\pi^2}} = \frac{\gamma \beta^2}{4\pi^2} \left[-\frac{4\pi^2}{2x_1\beta^2} - \frac{\pi^2}{\sqrt{x_1}\beta} \text{ctg} \left(\frac{\sqrt{x_1}\beta}{2\pi} \right) \right]; \\ \tilde{x}_{10}^2 &= \frac{x_{10}\beta^2}{4\pi^2}, \ x_2 &= -2\sqrt{Q} \text{cos} \left(\Phi + \frac{2}{3}\pi \right) - \frac{A}{3} = -x_{20}, \ \tilde{x}_{20}^2 &= \frac{x_{20}\beta^2}{4\pi^2}, \\ x_3 &= -2\sqrt{Q} \text{cos} \left(\Phi - \frac{2}{3}\pi \right) - \frac{A}{3} = -x_{30}, \ \tilde{x}_{30}^2 &= \frac{x_{30}\beta^2}{4\pi^2}. \end{split}$$

Если $x_1 > 0, x_2 > 0, x_3 > 0$, то

$$*_{1} = \frac{1}{2} \left\{ \beta_{0} \frac{\beta^{2}}{24} + \frac{\gamma \beta^{2}}{4\pi^{2}} \left[-\frac{4\pi^{2}}{2x_{1}\beta^{2}} - \frac{\pi^{2}}{\sqrt{x_{1}\beta}} \operatorname{ctg} \left(\frac{\sqrt{x_{1}\beta}}{2} \right) \right] + \frac{\phi \beta^{2}}{4\pi^{2}} \left[-\frac{4\pi^{2}}{2x_{2}\beta^{2}} - \frac{\pi^{2}}{\sqrt{x_{2}\beta}} \operatorname{ctg} \left(\frac{\sqrt{x_{2}\beta}}{2} \right) \right] + \frac{\Delta \beta^{2}}{4\pi^{2}} \left[-\frac{4\pi^{2}}{2x_{3}\beta^{2}} - \frac{\pi^{2}}{\sqrt{x_{3}\beta}} \operatorname{ctg} \left(\frac{\sqrt{x_{3}\beta}}{2} \right) \right] \right\}. (13)$$

Перейдем к вычислению второй суммы в (9):

$$2 = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{\beta_0 \cos 2\nu_n T_0}{\nu_n^2} + \frac{\gamma \cos 2\nu_n T_0}{\nu_n^2 - x_1} + \frac{\phi \cos 2\nu_n T_0}{\nu_n^2 - x_2} + \frac{\Delta \cos 2\nu_n T_0}{\nu_n^2 - x_3} \right)$$

$$\frac{1}{2} \sum_{n=1}^{\infty} \frac{\beta_0 \cos^2 \frac{2\pi T_0 n}{\beta}}{\frac{4\pi^2 n^2}{\beta^2}} = \frac{1}{2} \left[\frac{\beta^2 \beta_0}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos^2 \frac{2\pi T_0}{\beta} n}{n^2} \right] = \frac{1}{2} \left[\frac{\beta^2 \beta_0}{4\pi^2} \frac{1}{12} \times \left[\frac{\beta^2 \beta_0}{\beta^2} + 2\pi^2 \right] \right] + \frac{1}{2} \gamma \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta}}{\frac{4\pi^2 n^2}{\beta^2} - x_1} = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{\beta^2 \gamma}{4\pi^2} \sum_{n=1}^{\infty} \frac{\sin \frac{4\pi T_0 n}{\beta} n}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right] = \frac{1}{2} \left[\frac{$$

$$=\frac{1}{2}\left[\frac{\beta^2\gamma}{4\pi^2}\left\{\frac{\pi^2}{\sqrt{x_1}\beta}\cos\left[\left(\pi-\frac{4\pi T_0}{\beta}\right)\frac{\sqrt{x_1}\beta}{2\pi}\right]\csc\frac{\sqrt{x_1}\beta}{2}+\frac{2\pi^2}{x_1\beta^2}\right\}\right].$$

При $x_1, x_2, x_3 > 0$ вторая сумма в (9) дает

$$\frac{1}{2} \left\{ \frac{\beta_0 \beta^2}{48} \left(3 \frac{(4\pi T_0)^2}{\beta} - \frac{24\pi^2 T_0}{\beta} + 2\pi^2 \right) + \frac{\gamma \beta^2}{4\pi^2} \left\{ \frac{\pi^2}{\sqrt{x_1 \beta}} \cos \left[\left(\pi - \frac{4\pi T_0}{\beta} \right) \frac{\sqrt{x_1 \beta}}{2\pi} \right] \csc \frac{\sqrt{x_1 \beta}}{2} \right\} + \frac{\phi \beta^2}{4\pi^2} \left\{ \frac{\pi^2}{\sqrt{x_2 \beta}} \cos \left[\left(\pi - \frac{4\pi T_0}{\beta} \right) \frac{\sqrt{x_2 \beta}}{2\pi} \right] \csc \frac{\sqrt{x_2 \beta}}{2} - \frac{2\pi^2}{x_2 \beta^2} \right\} + \frac{\Delta \beta^2}{4\pi^2} \left\{ \frac{\pi^2}{\sqrt{x_3 \beta}} \cos \left[\left(\pi - \frac{4\pi T_0}{\beta} \right) \frac{\sqrt{x_3 \beta}}{2\pi} \right] \csc \frac{\sqrt{x_3 \beta}}{2} - \frac{2\pi^2}{x_3 \beta^2} \right\} \right\}. \tag{14}$$

Квазиклассическое действие с учетом двух промотирующих мод сводится к выражению вида

$$S_{10} = 2\omega_0^2(a+b)a\tau_0 - \frac{2}{\beta}\omega_0^2(a+b)^2\tau_0^2 - \frac{4}{\beta}\omega_0^4(a+b)^2\{*_1 + *_2\}\;,$$

где

$$\tau_0 = \frac{1}{2\omega_0} \operatorname{Arcsh} \left[\frac{b-a}{b+a} \operatorname{sh} \frac{\omega_0 \beta}{4} \right] + \frac{\beta}{4} = \frac{1}{2\omega_0} \operatorname{Arcsh} \left[\frac{\frac{b}{a}-1}{\frac{b}{a}+1} \operatorname{sh} \frac{\omega_0 \beta}{4} \right] + \frac{\beta}{4},$$

или

$$\tau_0^* = \tau_0 \omega_0 = \frac{1}{2} \operatorname{Arcsh} \left[\frac{b^* - 1}{b^* + 1} \operatorname{sh} \beta^* \right] + \beta^*; \ \tau_0^* = \tau \omega_0; \ \beta^* = \frac{\omega_0 \beta}{4}.$$

Окончательно перенормированное выражение для 1D-квазиклассического инстантонного действия с учетом двух локальных мод среды — термостата принимает вид

$$\begin{split} \tilde{S}_{10} &= \frac{S_{10}}{\omega_0 a^2} = 2(b^* + 1)\tau_0^* - \frac{1}{2\beta^*}(b^* + 1)^2\tau_0^{*2} - \frac{(b^* + 1)^2}{\beta^*} \left\{ \frac{1}{2} \left[\beta_0 \omega_0^2 \left(\frac{\beta \omega_0}{4} \right)^2 \frac{2}{3} + \right. \right. \\ &+ 4 \frac{\gamma \omega_0^2 \left(\frac{\beta \omega_0}{4} \right)^2}{\pi^2} \left[-\frac{4\pi^2}{2x_1 \beta^2} - \frac{\pi^2}{\sqrt{x_1 \beta}} \operatorname{ctg} \frac{\sqrt{x_1 \beta}}{2\pi} \right] + 4 \frac{\phi \omega_0^2 \beta^{*2}}{\pi^2} \left[-\frac{4\pi^2}{2x_2 \beta^2} - \frac{\pi^2}{\sqrt{x_2 \beta}} \operatorname{ctg} \frac{\sqrt{x_2 \beta}}{2\pi} \right] + \\ &+ 4 \frac{\Delta \omega_0^2 \beta^{*2}}{\pi^2} \left[-\frac{4\pi^2}{2x_3 \beta^2} - \frac{\pi^2}{\sqrt{x_3 \beta}} \operatorname{ctg} \frac{\sqrt{x_3 \beta}}{2\pi} \right] \right] - \\ &- \frac{1}{2} \left[\beta_0 \omega_0^2 \left(\frac{\beta \omega_0}{4} \right)^2 \frac{1}{3} \left(3 \left(\frac{4\pi \tau_0 \omega_0}{\beta \omega_0} \right)^2 - \frac{6\pi^2 \tau_0 \omega_0 4}{\beta \omega_0} + 2\pi^2 \right) + \frac{4\gamma \omega_0^2 \left(\frac{\beta \omega_0}{4} \right)^2}{\pi^2} \times \right. \\ &\times \left\{ \frac{\omega_0 \pi^2 4}{4\sqrt{x_1 \beta} \omega_0} \cos \left[\left(\pi - \frac{4\pi \tau_0 \omega_0}{\beta \omega_0} \right) \frac{\sqrt{x_1 2 \beta \omega_0}}{\omega_0 \pi^4} \right] \operatorname{cosec} \frac{2\sqrt{x_1}}{\omega_0} \frac{\beta_0 \omega_0}{4} + \frac{\omega_0^2 \pi^2 4}{8x_1 \beta \omega_0} \right\} + \\ &+ \frac{4\phi \omega_0^2 \beta^{*2}}{\pi^2} \left\{ \frac{\omega_0 \pi^2 4}{4\sqrt{x_2 \beta^*}} \cos \left[\left(\pi - \frac{4\pi \tau_0^* \omega_0}{\beta^*} \right) \frac{\sqrt{x_2 2 \beta^*}}{\omega_0 \pi} \right] \operatorname{cosec} \frac{2\sqrt{x_2}}{\omega_0} \beta^* + \frac{\omega_0^2 \pi^2}{8x_2 \beta^{*2}} \right\} + \\ &+ \frac{4\Delta \omega_0^2 \beta^{*2}}{\pi^2} \left\{ \frac{\omega_0 \pi^2 4}{4\sqrt{x_3 \beta^*}} \cos \left[\left(\pi - \frac{4\pi \tau_0^* \omega_0}{\beta^*} \right) \frac{\sqrt{x_3 2 \beta^*}}{\omega_0 \pi} \right] \operatorname{cosec} \frac{2\sqrt{x_3}}{\omega_0} \beta^* + \frac{\omega_0^2 \pi^2}{8x_3 \beta^{*2}} \right\} \right]. (15) \end{split}$$

Перейдем к вычислению предэкспоненциального фактора с учетом двух промотирующих фононных мод:

$$B = \frac{2\omega_0^2 (a+b)^2}{(2\pi\beta)^{\frac{1}{2}}} \frac{\sum_{n=-\infty}^{\infty} \frac{\sin^2 \nu_n \tau_0}{\lambda_{0n}}}{\left[\sum_{n=-\infty}^{\infty} \frac{\cos 2\nu_n \tau_0}{\lambda_{0n}}\right]^{\frac{1}{2}}},$$
(16)

где $\lambda_{0n} = v_n^2 + \omega_0^2 + \zeta_n$

$$\sum_{n=-\infty}^{\infty} \frac{\sin^{2} v_{n} \tau_{0} = \frac{1}{2} (1 - \cos 2v_{n} \tau_{0})}{v_{n}^{2} + \omega_{0}^{2} + \frac{v_{n}^{2} C_{2}^{2}}{\omega_{2}^{2} (\omega_{2}^{2} + v_{n}^{2})} + \frac{v_{n}^{2} C_{3}^{2}}{\omega_{3}^{2} (\omega_{3}^{2} + v_{n}^{2})} =$$

$$= \frac{1}{2} \sum_{n=-\infty}^{\infty} \frac{(1 - \cos 2v_{n} \tau_{0}) \omega_{2}^{2} \omega_{3}^{2} (\omega_{2}^{2} + v_{n}^{2}) (\omega_{3}^{2} + v_{n}^{2})}{(\omega_{0}^{2} + v_{n}^{2}) \omega_{2}^{2} \omega_{3}^{2} (\omega_{2}^{2} + v_{n}^{2}) (\omega_{3}^{2} + v_{n}^{2}) + v_{n}^{2} C_{2}^{2} \omega_{3}^{2} (\omega_{3}^{2} + v_{n}^{2}) + v_{n}^{2} C_{3}^{2} \omega_{3}^{2} (\omega_{2}^{2} + v_{n}^{2})} =$$

$$= \frac{1}{2} \sum_{n=-\infty}^{\infty} \frac{(1 - \cos 2v_{n} \tau_{0}) (\omega_{2}^{2} + v_{n}^{2}) (\omega_{3}^{2} + v_{n}^{2})}{x^{3} + Ax^{2} + Bx + C}, \tag{17}$$

В соотношениях (16), (17) введены следующие обозначения:

$$x = v_n^2; \ A = \omega_2^2 + \omega_3^2 + \omega_0^2 + \frac{C_2^2}{\omega_2^2} + \frac{C_3^2}{\omega_3^2};$$
$$B = \omega_2^2 \omega_3^2 + \omega_0^2 (\omega_2^2 + \omega_3^2) + \frac{C_2^2 \omega_3^2}{\omega_2^2} + \frac{C_3^2 \omega_2^2}{\omega_3^2}; \ C = \omega_0^2 \omega_2^2 \omega_3^2.$$

Обозначим также

$$Q = \frac{A^2 - 3B}{9}$$
; $R = \frac{2A^3 - 9AB + 27C}{54}$; $S = Q^3 - R^2$; $\Phi = \frac{1}{3}\arccos\left(\frac{R}{\sqrt{Q^3}}\right)$.

При S > 0

$$x_1 = -2\sqrt{Q}\cos(\Phi) - \frac{A}{3}, \quad x_2 = -2\sqrt{Q}\cos\left(\Phi + \frac{2}{3}\pi\right) - \frac{A}{3},$$
$$x_3 = -2\sqrt{Q}\cos\left(\Phi - \frac{2}{3}\pi\right) - \frac{A}{3}.$$

Разложим знаменатель соотношения (17)

$$\begin{split} &=\frac{1}{2}\sum_{n=-\infty}^{\infty}\frac{(\omega_{2}^{2}+v_{n}^{2})(\omega_{3}^{2}+v_{n}^{2})}{(v_{n}^{2}-x_{1})(v_{n}^{2}-x_{2})(v_{n}^{2}-x_{3})} = \frac{D}{v_{n}^{2}-x_{1}} + \frac{E}{v_{n}^{2}-x_{2}} + \frac{F}{v_{n}^{2}-x_{3}};\\ &F = \left\{ (\omega_{2}^{2}+\omega_{3}^{2}+x_{2}+x_{3})\big[x_{2}x_{3}(x_{1}+x_{3})-x_{1}x_{3}(x_{2}+x_{3})\big] + \right.\\ &\left. + (x_{2}-x_{1})\Big[(x_{2}+x_{3})\omega_{2}^{2}\omega_{3}^{2}+x_{2}x_{3}(\omega_{2}^{2}+\omega_{3}^{2})\big]\right\} \times\\ &\left. \times \left\{ (x_{2}-x_{1})\big[x_{1}x_{2}(x_{2}+x_{3})-x_{2}x_{3}(x_{1}+x_{2})\big] - \right.\\ &\left. - (x_{1}-x_{3})\big[x_{2}x_{3}(x_{1}+x_{3})-x_{1}x_{3}(x_{2}+x_{3})\big]\right\}^{-1}; \end{split}$$

$$E = \frac{\omega_2^2 + \omega_3^2 + x_2 + x_3 + F(x_1 - x_3)}{x_2 - x_1};$$

$$D = -\frac{\omega_2^2 + \omega_3^2 + E(x_1 + x_3) + F(x_1 + x_2)}{x_2 + x_3};$$

$$\frac{1}{2} \sum_{n = -\infty}^{\infty} \frac{D}{v_n^2 - x_1} = \frac{D}{2} \sum_{n = -\infty}^{\infty} \frac{1}{\frac{4\pi^2 n^2}{\beta^2} - x_1} =$$

$$= \frac{1}{2} \frac{D\beta^2}{4\pi^2} \sum_{n = -\infty}^{\infty} \frac{1}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} = \frac{1}{2} \frac{D\beta^2}{4\pi^2} \left[-\frac{4\pi^2}{x_1 \beta^2} + 2 \sum_{n = -\infty}^{\infty} \frac{1}{n^2 - \frac{x_1 \beta^2}{4\pi^2}} \right].$$
При $x_1 > 0$:
$$\frac{1}{2} \sum_{n = -\infty}^{\infty} \frac{D}{v_n^2 - x_1} = \frac{1}{2} \frac{D\beta^2}{4\pi^2} \left[-\frac{4\pi^2}{x_1 \beta^2} + 2 \left\{ -\frac{2\pi^2}{x_1 \beta^2} - \frac{\pi^2}{\sqrt{x_1 \beta}} \text{ctg} \frac{\sqrt{x_1 \beta}}{2} \right\} \right].$$

Сумма, содержащая $\cos 2v_n \tau_0$, дает в этом случае

$$-\frac{1}{2}\frac{D\beta^{2}}{4\pi^{2}}\left[-\frac{4\pi^{2}}{x_{1}\beta^{2}}+2\left\{-\frac{\pi^{2}}{\sqrt{x_{1}}\beta}\cos\left[\left(\pi-\frac{4\pi\tau_{0}}{\beta}\right)\frac{\sqrt{x_{1}}\beta}{2\pi}\right]\csc\frac{\sqrt{x_{1}}\beta}{2}+\frac{2\pi^{2}}{x_{1}\beta^{2}}\right\}\right]. (18)$$

В итоге обезразмеренный предэкспоненциальный фактор определяется суммами двух типов:

$$\begin{split} \tilde{B} &= \frac{B}{a^2 \omega^{\frac{3}{2}}} = \frac{2\omega_0^2 (\frac{b}{a} + 1)^2}{(2\pi\beta)^{\frac{1}{2}}} \frac{\Sigma_1}{(\Sigma_2)^{\frac{1}{2}}}; \\ \Sigma_1 &= \sum_{n = -\infty}^{\infty} \frac{\sin^2 v_n \tau_0}{\lambda_{0n}} = \frac{1}{2} \frac{D\beta^2}{4\pi^2} \left[-\frac{4\pi^2}{x_1 \beta^2} + 2 \left\{ -\frac{2\pi^2}{x_{10} \beta^2} - \frac{\pi^2}{\sqrt{x_1 \beta}} \operatorname{ctg} \frac{\sqrt{x_1 \beta}}{2} \right\} \right] + \\ &\qquad \frac{1}{2} \frac{E\beta^2}{4\pi^2} \left[-\frac{4\pi^2}{x_2 \beta^2} + 2 \left\{ -\frac{2\pi^2}{x_{20} \beta^2} - \frac{\pi^2}{\sqrt{x_2 \beta}} \operatorname{ctg} \frac{\sqrt{x_2 \beta}}{2} \right\} \right] + \\ &\qquad + \frac{1}{2} \frac{F\beta^2}{4\pi^2} \left[-\frac{4\pi^2}{x_3 \beta^2} + 2 \left\{ -\frac{2\pi^2}{x_{30} \beta^2} - \frac{\pi^2}{\sqrt{x_3 \beta}} \operatorname{ctg} \frac{\sqrt{x_3 \beta}}{2} \right\} \right] - \\ &\qquad - \frac{1}{2} \frac{D\beta^2}{4\pi^2} \left[-\frac{4\pi^2}{x_1 \beta^2} + 2 \left\{ -\frac{\pi^2}{\sqrt{x_1 \beta}} \operatorname{cos} \left[\left(\pi - \frac{4\pi \tau_0}{\beta} \right) \frac{\sqrt{x_1 \beta}}{2\pi} \right] \operatorname{cosec} \frac{\sqrt{x_1 \beta}}{2} + \frac{2\pi^2}{x_1 \beta^2} \right\} \right] - \end{split}$$

$$-\frac{1}{2} \frac{E\beta^{2}}{4\pi^{2}} \left[-\frac{4\pi^{2}}{x_{2}\beta^{2}} + 2\left\{ -\frac{\pi^{2}}{\sqrt{x_{2}\beta}} \cos\left[\left(\pi - \frac{4\pi\tau_{0}}{\beta}\right) \frac{\sqrt{x_{2}\beta}}{2\pi}\right] \csc\left(\frac{\sqrt{x_{2}\beta}}{2} + \frac{2\pi^{2}}{x_{2}\beta^{2}}\right) \right] - \frac{1}{2} \frac{F\beta^{2}}{4\pi^{2}} \left[-\frac{4\pi^{2}}{x_{3}\beta^{2}} + 2\left\{ -\frac{\pi^{2}}{\sqrt{x_{3}\beta}} \cos\left[\left(\pi - \frac{4\pi\tau_{0}}{\beta}\right) \frac{\sqrt{x_{3}\beta}}{2\pi}\right] \csc\left(\frac{\sqrt{x_{3}\beta}}{2} + \frac{2\pi^{2}}{x_{3}\beta^{2}}\right) \right];$$

$$\Sigma_{2} = \sum_{n=-\infty}^{\infty} \frac{\cos 2\nu_{n}\tau_{0}}{\lambda_{0n}} = \frac{D\beta^{2}}{4\pi^{2}} \left[-\frac{4\pi^{2}}{x_{1}\beta^{2}} + 2\left\{ -\frac{\pi^{2}}{\sqrt{x_{1}\beta}} \cos\left[\left(\pi - \frac{4\pi\tau_{0}}{\beta}\right) \frac{\sqrt{x_{1}\beta}}{2\pi}\right] \csc\left(\frac{\sqrt{x_{1}\beta}}{2} + \frac{2\pi^{2}}{x_{1}\beta^{2}}\right) \right] + \frac{E\beta^{2}}{4\pi^{2}} \left[-\frac{4\pi^{2}}{x_{2}\beta^{2}} + 2\left\{ -\frac{\pi^{2}}{\sqrt{x_{2}\beta}} \cos\left[\left(\pi - \frac{4\pi\tau_{0}}{\beta}\right) \frac{\sqrt{x_{2}\beta}}{2\pi}\right] \csc\left(\frac{\sqrt{x_{2}\beta}}{2} + \frac{2\pi^{2}}{x_{2}\beta^{2}}\right) \right] + \frac{F\beta^{2}}{4\pi^{2}} \left[-\frac{4\pi^{2}}{x_{3}\beta^{2}} + 2\left\{ -\frac{\pi^{2}}{\sqrt{x_{3}\beta}} \cos\left[\left(\pi - \frac{4\pi\tau_{0}}{\beta}\right) \frac{\sqrt{x_{3}\beta}}{2\pi}\right] \csc\left(\frac{\sqrt{x_{3}\beta}}{2} + \frac{2\pi^{2}}{x_{3}\beta^{2}}\right) \right].$$
(19)

В результате аналитически найдено выражение для вероятности 1D-туннельного переноса с учетом влияния двух промотирующих фононных мод среды — термостата:

$$\Gamma = B \exp(-S) \,. \tag{20}$$

Условие (7), ограничивающее применимость рассматриваемого приближения, для исследования туннелирования в полупроводниковых квантовых точках дает следующие оценки. Применимость квазиклассического инстантонного приближения при исследовании температурной зависимости вероятности туннелирования Г для КТ на основе InSb может быть оценена в квазиклассическом приближении из сравнения характерного размера системы с длиной волны де Бройля туннелирующей частицы, или, в рамках приближения разреженного газа пар «инстантон – антиинстантон»:

$$\begin{cases} R >> \frac{\hbar}{(2 - \sqrt{3})\sqrt{2m^*U_0}}, \\ R >> \frac{\hbar}{\sqrt{8m^*k_BT}}, \end{cases}$$

где U_0 — высота барьера; \emph{m}^* — эффективная масса туннелирующего электрона.

В первом неравенстве сравнивается радиус КТ R с длиной волны де Бройля туннелирующей частицы; вторая формула демонстрирует применимость приближения разреженного газа пар «инстантон — антиинстантон». Оба неравенства выполняются одновременно при $T \ge 50 \, K$ и $U_0 \approx 0,2$ эВ,

что может соответствовать КТ на основе InSb. Как показали Ал. Л. Эфрос и А. Л. Эфрос (1982), может происходить подавление кулоновских эффектов, если стартовая энергия частицы в КТ существенно превышает энергию кулоновского отталкивания: $U_0 >> e^2 / (q_0 + q_1)$. Дополняя это условие ограниче-

нием по величине напряженности электрического поля $E << \frac{U_0}{|e|(q_0+q_1)}$ для

КТ из InSb, можем получить следующее значение напряженности: $E << 3 \cdot 10^6 \, \mathrm{B/m}$.

Далее полученные аналитические результаты будут использованы для проведения численных оценок и качественного сравнения с существующими экспериментами.

Сравнение с экспериментом

Проведенный аналитический расчет позволяет также учесть роль влияния локальных моды среды – термостата на зависимость $\Gamma = B \exp(-S)$.

Дополнительный эксперимент по визуализации локальной плотности состояний в квантовых точках InAs/GaAs методом комбинированной ACM/ CTM был выполнен в Казанском физико-техническом институте КНЦ РАН при участии ННГУ им. Н. И. Лобачевского. Схема эксперимента представлена на рис. 1.

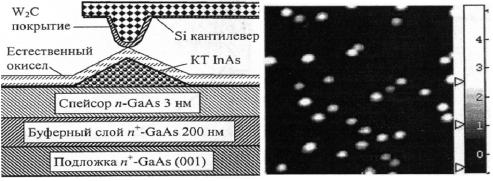


Схема измерения токового изображения поверхностных КТ InAs/GaAs

ACM изображение поверхности КТ InAs/GaAs. Размер кадра 750×750 нм², диапазон высот 5,9 нм

Рис. 1. Схема измерения токового изображения поверхностных KT InAS/GaAs

Качественное сравнение модельной кривой вероятности 1D-диссипативного туннелирования (20) (с учетом влияния двух локальных фононных мод среды — термостата) и экспериментальной ВАХ для полупроводниковых КТ из InAS/GaAs представлено на рис. 2. При этом характерный неэквидистантный спектр пиков на экспериментальных ВАХ и их соответствующие пики на теоретической зависимости вероятности 1D-диссипативного туннелирования с учетом влияния двух локальных (промотирующих) фононных мод среды — термостата от напряженности приложенного электрического поля качественно совпали гораздо лучше, чем это наблюдалось в модели, учитывающей влияние только одной локальной фононной моды.

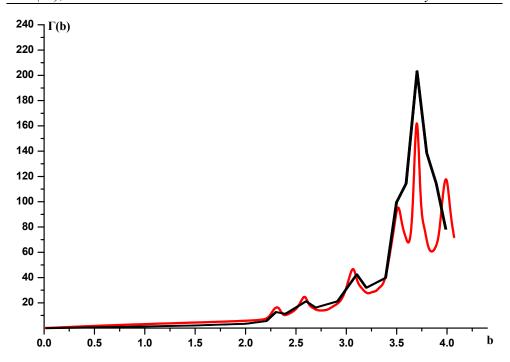


Рис. 2. Сравнение теоретических кривых (светлая линия) в модели для $\Gamma = B \exp(-S)$ с учетом влияния двух локальных мод среды — термостата с экспериментальными кривыми (темная линия)

Заключение

Таким образом, проведенный анализ продемонстрировал качественное соответствие расчетных кривых для вероятности туннелирования с некоторыми экспериментальными ВАХ в схемах исследования управляемых характеристик проводимости отдельных полупроводниковых квантовых точек в системах с совмещенными СТМ/АСМ.

Список литературы

- 1. **Тавгер, Б. А.** Квантовые размерные эффекты в полупроводниковых и полуметаллических пленках / Б. А. Тавгер, В. Я. Демиховский // Успехи физических наук. 1968. Т. 96, № 1. С. 61–86.
- 2. **Имри, Й.** Введение в мезоскопическую физику / Й. Имри. М. : Физматлит, 2002. 304 с.
- 3. Caldeira, A. O. Influence of dissipation on quantum tunneling in macroscopic systems / A. O. Caldeira, A. J. Leggett // Phys. Rev. Lett. 1981. V. 46, № 4. P. 211–214.
- 4. **Ларкин, А. И.** Квантовое туннелирование с диссипацией / А. И. Ларкин, Ю. Н. Овчинников // Письма в ЖЭТФ. 1983. Т. 37, № 7. С. 322–325.
- 5. **Ларкин, А. И.** Влияние квантования уровней на время жизни метастабильных состояний / А. И. Ларкин, Ю. Н. Овчинников // Журнал экспериментальной и теоретической физики. 1986. Т. 91, № 1 (7). С. 318—325.
- 6. **Гантмахер**, **В. Ф.** Встречи в мезоскопической области (Мезоскопические и сильнокоррелированные электронные системы «Черноголовка–97» / В. Ф. Гантмахер, М. В. Фейгельман // Успехи физических наук. 1998. Т. 168, № 2. С. 113–116.

- 7. **Тернов, И. М.** Квантовая механика и макроскопические эффекты / И. М. Тернов, В. Ч. Жуковский, А. В. Борисов. М.: Изд-во МГУ, 1993. 198 с.
- 8. Введение в современную мезоскопику / А. К. Арынгазин, В. Ч. Жуковский, В. Д. Кревчик и др. Пенза : Изд-во ПГУ, 2003. 570 с.
- 9. Transfer processes in low-dimensional systems : сб. ст. / под ред. А. К. Арынгазина, В. Д. Кревчика, В. Я. Кривнова, М. Б. Семенова, К. Yamamoto. UT Research Institute Press, Tokyo, Japan, 2005. 690 р.
- 10. Управляемое диссипативное туннелирование. Туннельный транспорт в низкоразмерных системах / под ред. Э. Леггета, А. К. Арынгазина, М. Б. Семенова и др.). М.: Физматлит, 2011. 498 с.

Кревчик Владимир Дмитриевич

доктор физико-математических наук, профессор, заведующий кафедрой физики, Пензенский государственный университет

E-mail: physics@pnzgu.ru

Семенов Михаил Борисович

доктор физико-математических наук, профессор, кафедра физики, Пензенский государственный университет

E-mail: physics@pnzgu.ru

Зайцев Роман Владимирович

кандидат физико-математических наук, доцент, кафедра физики, Пензенский государственный университет

E-mail: physics@pnzgu.ru

Арынгазин Аскар Канапьевич

доктор физико-математических наук, директор Института фундаментальных исследований, Евразийский национальный университет имени Л. Н. Гумилева (Астана, Казахстан); профессор института фундаментальных исследований (Флорида, США)

E-mail: physics@pnzgu.ru

Кенджи Ямамото

профессор, директор исследовательского института при Международном медицинском центре (Токио, Япония)

E-mail: physics@pnzgu.ru

Рудин Вадим Александрович

аспирант, Пензенский государственный университет

E-mail: physics@pnzgu.ru

Krevchik Vladimir Dmitrievich

Doctor of physical and mathematical sciences, professor, head of sub-department of physics, Penza State University

Semyonov Mikhail Borisovich

Doctor of physical and mathematical sciences, professor, sub-department of physics, Penza State University

Zaytsev Roman Vladimirovich

Candidate of physical and mathematical sciences, associate professor, sub-department of physics, Penza State University

Aryngazin Askar Kanapyevich

Doctor of physical and mathematical sciences, director of the Institute of Fundamental Research, Eurasian National University named after L. N. Gumilyov (Astana, Kazakhstan); professor, Institute of fundamental research research (Florida, USA)

Kenji Yamamoto

Professor, Director of Research Institute of International Clinical Center (Tokyo, Japan)

Rudin Vadim Alexandrovich

Postgraduate student, Penza State University Кревчик Павел Владимирович

студент, Пензенский

государственный университет

E-mail: physics@pnzgu.ru

Егоров Илья Андреевич

студент, Пензенский

государственный университет

E-mail: physics@pnzgu.ru

Krevchik Pavel Vladimirovich

Student, Penza State University

Egorov Ilya Andreevich

Student, Penza State University

УДК 539.23; 539.216.1; 537.311.322

Особенности диссипативного туннелирования в квантовой молекуле с учетом двух фононных мод диэлектрической матрицы / В. Д. Кревчик, М. Б. Семенов, Р. В. Зайцев, А. К. Арынгазин, К. Ямамото, В. А. Рудин, П. В. Кревчик, И. А. Егоров // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. — 2012. — № 4 (24). — С. 135—149.